THE CHINESE UNIVERSITY OF HONG KONG DEPARTMENT OF MATHEMATICS

MMAT5510 Foundation of Advanced Mathematics 2017-2018 Supplementary Exercise 3

- 1. Let $f: A \to B$ be a bijective function.
 - (a) Show that there exists unique inverse function $g: B \to A$ of f, i.e. g satisfies g(f(x)) = x for all $x \in A$ and f(g(y)) = y for all $y \in B$.

(Therefore, the unique inverse function is denoted by f^{-1} .)

(b) Show that $f^{-1}: B \to A$ is also a bijective function.

Ans:

- (a) Since f is surjective, let y ∈ B, there exists x ∈ A such that f(x) = y.
 Furthermore, since f is injective, the element x ∈ A is the unique one such that f(x) = y.
 We define g : B → A by g(y) = x. Then we have g(f(x)) = g(y) = x for all x ∈ A and f(g(y)) = f(x) = y for all y ∈ B, i.e. g is an inverse function.
 Furthermore, suppose that g₁, g₂ : B → A are inverse functions of f.
 Then for all y ∈ B, we have f(g₁(y)) = f(g₂(y)) = y. However, f is an injective function, so g₁(y) = g₂(y). Therefore, g₁(y) = g₂(y) for all y ∈ B which means they are the same function, i.e. inverse function of f is unique.
- (b) Suppose that f⁻¹(y₁) = f⁻¹(y₂) where y₁, y₂ ∈ B. Then, y₁ = f(f⁻¹(y₁)) = f(f⁻¹(y₂)) = y₂, and so f⁻¹ is injective. Let x ∈ A, then f(x) ∈ B. Let y = f(x) ∈ B, then f⁻¹(y) = f⁻¹(f(x)) = x and so f⁻¹ is surjective. Therefore, f⁻¹ is bijective.
- 2. Let $f: A \to B$ and $g: B \to C$ be two bijective functions.

Show that $g \circ f : A \to C$ is a bijective function.

Ans:

Let $x_1, x_2 \in A$ such that $(g \circ f)(x_1) = (g \circ f)(x_2)$, i.e. $g(f(x_1)) = g(f(x_2))$.

Since g is injective, $f(x_1) = f(x_2)$. Then, since f is injective, $x_1 = x_2$.

Therefore $g \circ f$ is injective.

Let $y \in C$. Since g is surjective, there exists $w \in B$ such that g(w) = y.

Also, since f is surjective, there exists $x \in A$ such that f(x) = w.

Then, we have $(g \circ f)(x) = g(f(x)) = g(w) = y$ and so $g \circ f$ is surjective.

3. Let $f: B \to C$ be a function.

If A is a subset of B, the restriction of f on A is a function $f|_A : A \to C$ defined by $f|_A(x) = f(x)$ for all $x \in A$. Show that if f is an injective function, then $f|_A$ is an injective function.

Ans:

Let $x_1, x_2 \in A$ such that $f|_A(x_1) = f|_A(x_2)$.

Then, we have $f(x_1) = f|_A(x_1) = f|_A(x_2) = f(x_2)$.

Since f is an injective function, $f(x_1) = f(x_2)$ implies $x_1 = x_2$.

Therefore, $f|_A$ is an injective function.

4. Let $m, n, p \in \mathbb{N}$. Prove that m + p = n + p if and only if m = n.

Ans:

 (\Rightarrow) Prove by mathematical induction on p.

When p = 0, if m + p = n + p, then it means m + 0 = n + 0 and so m = n. Assume that if $m, n, p \in \mathbb{N}$ such that m + p = n + p, then we have m = n.

Then, $m + p^+ = n + p^+$ implies $(m + p)^+ = (n + p)^+$ and so m + p = n + p.

By induction assumption, we have m = n.

 (\Leftarrow) Prove by mathematical induction on p.

When p = 0, if m = n, then m + p = m + 0 = m = n = n + 0 = n + p.

Assume that if $m, n, p \in \mathbb{N}$ such that m = n, then we have m + p = n + p.

Then, we also have $(m + p)^+ = (n + p)^+$ and so $m + p^+ = n + p^+$.

(Remark: recall the fact that for any $x, y \in \mathbb{N}$, x = y if and only if $x^+ = y^+$.)

5. Show that for all $p, q \in \mathbb{N}$, $p \leq q$ if and only if there exists $r \in \mathbb{N}$ such that q = p + r.

Ans:

 (\Rightarrow) Prove by mathematical induction on p.

When p = 0, suppose that $0 = p \le q$, then q = 0 + q = p + q (i.e. take r = q). Assume the $p \in \mathbb{N}$ and if $q \in \mathbb{N}$ with $p \le q$, then we have q = p + r for some $r \in \mathbb{N}$.

Now, if $p^+ \leq q$, we have p < q and hence $p \leq q$.

By the induction assumption, q = p + t for some natural number t.

However, t cannot be 0. Otherwise, we have q = p which is a contradiction.

Then t is a nonzero natural number, it means that $t = r^+$ for some natural number r.

Therefore, $q = p + r^+ = (p + r)^+ = (r + p)^+ = r + p^+ = p^+ + r$.

(\Leftarrow) It is sufficient for us to show that for all $p, r \in \mathbb{N}$, we have $p \leq p + r$.

We prove it by induction on r.

When r = 0, it is trivial. Assume that $p, r \in \mathbb{N}$ such that $p \leq p + r$.

Then $p + r \le (p + r)^+ = p + r^+$ and so $p \le p + r^+$.

(Remark: By the result of question 1, if $p \le q$, then there exists **unique** r such that q = p + r.)

6. (Archimedean Property) Prove that for all $m, n \in \mathbb{N}$ with $n \neq 0$, there exists q such that m < qn. Ans:

Prove by mathematical induction on m.

When m = 0, since $n \neq 0$, we have $m = 0 < n = 1 \cdot n$.

Assume that $m \in \mathbb{N}$ and there exists q such that m < qn.

Then we have $m^+ = m + 1 < qn + 1 \le qn + n = (q + 1)n$.

Well Ordering Property states that every non-empty subset M of \mathbb{N} contains a least element, i.e. there exists $m \in M$ such that $m \leq n$ for all $n \in M$.

Furthermore, the least element m must be unique. Note that if m and m' are both least elements of M, then we have $m \leq m'$ (m is a least element) and $m' \leq m$ (m' is a lease element) and so m = m'.

7. (Division Algorithm) If m and n are natural numbers and $n \neq 0$, prove that there exists unique natural numbers q and r such that m = qn + r and $0 \leq r < n$.

Ans:

By Archimedean property, $S = \{a \in \mathbb{N} : m < an\}$ is a non-empty subset of \mathbb{N} .

By well ordering property, there exists an unique least element t of S.

Furthermore, t cannot be 0 (otherwise, we have $m < 0 \cdot n = 0$ which is a contradiction), so $t = q^+$ for a unique $q \in \mathbb{N}$.

Note that q must not be an element of S, so we have $m \ge qn$.

There exists unique $r \in \mathbb{N}$ such that m = qn + r. (See question 2)

Note that $r \in \mathbb{N}$, so $0 \leq r$.

We then claim that r < n. Suppose not and $n \ge r$ implies that r = n + r' for some $r' \in \mathbb{N}$.

Then $m = qn + r = qn + (n + r') = (qn + n) + r' = q^+n + r'$, that means $m \ge q^+$ which contradicts to the fact that $q^+ \in S$. Therefore, $0 \le r < n$.

8. Prove that every natural number n > 1 is divisible by a prime number.

Ans:

Let S be the set of all natural numbers n > 1 which is not divisible by any prime number.

Suppose the above statement is false, then S is a non-empty set.

By the well ordering property, there exists a least natural number N > 1 that is not divisible by any prime number.

Then N cannot be a prime, otherwise, N is divisible by itself which means it is divisible by a prime. Therefore, N is a composite number, i.e. N = ab for some natural numbers a and b with 1 < a < Nand 1 < b < N.

Since 1 < a < N, a is divisible by a prime number p which implies N is also divisible by p (Contradiction).