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1. Let f : A→ B be a bijective function.

(a) Show that there exists unique inverse function g : B → A of f , i.e. g satisfies g(f(x)) = x for

all x ∈ A and f(g(y)) = y for all y ∈ B.

(Therefore, the unique inverse function is denoted by f−1.)

(b) Show that f−1 : B → A is also a bijective function.

Ans:

(a) Since f is surjective, let y ∈ B, there exists x ∈ A such that f(x) = y.

Furthermore, since f is injective, the element x ∈ A is the unique one such that f(x) = y.

We define g : B → A by g(y) = x. Then we have g(f(x)) = g(y) = x for all x ∈ A and

f(g(y)) = f(x) = y for all y ∈ B, i.e. g is an inverse function.

Furthermore, suppose that g1, g2 : B → A are inverse functions of f .

Then for all y ∈ B, we have f(g1(y)) = f(g2(y)) = y. However, f is an injective function, so

g1(y) = g2(y). Therefore, g1(y) = g2(y) for all y ∈ B which means they are the same function,

i.e. inverse function of f is unique.

(b) Suppose that f−1(y1) = f−1(y2) where y1, y2 ∈ B.

Then, y1 = f(f−1(y1)) = f(f−1(y2)) = y2, and so f−1 is injective.

Let x ∈ A, then f(x) ∈ B. Let y = f(x) ∈ B, then f−1(y) = f−1(f(x)) = x and so f−1 is

surjective.

Therefore, f−1 is bijective.

2. Let f : A→ B and g : B → C be two bijective functions.

Show that g ◦ f : A→ C is a bijective function.

Ans:

Let x1, x2 ∈ A such that (g ◦ f)(x1) = (g ◦ f)(x2), i.e. g(f(x1)) = g(f(x2)).

Since g is injective, f(x1) = f(x2). Then, since f is injective, x1 = x2.

Therefore g ◦ f is injective.

Let y ∈ C. Since g is surjective, there exists w ∈ B such that g(w) = y.

Also, since f is surjective, there exists x ∈ A such that f(x) = w.

Then, we have (g ◦ f)(x) = g(f(x)) = g(w) = y and so g ◦ f is surjective.

3. Let f : B → C be a function.

If A is a subset of B, the restriction of f on A is a function f |A : A→ C defined by f |A(x) = f(x)

for all x ∈ A.
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Show that if f is an injective function, then f |A is an injective function.

Ans:

Let x1, x2 ∈ A such that f |A(x1) = f |A(x2).

Then, we have f(x1) = f |A(x1) = f |A(x2) = f(x2).

Since f is an injective function, f(x1) = f(x2) implies x1 = x2.

Therefore, f |A is an injective function.

4. Let m,n, p ∈ N. Prove that m + p = n + p if and only if m = n.

Ans:

(⇒) Prove by mathematical induction on p.

When p = 0, if m + p = n + p, then it means m + 0 = n + 0 and so m = n. Assume that if

m,n, p ∈ N such that m + p = n + p, then we have m = n.

Then, m + p+ = n + p+ implies (m + p)+ = (n + p)+ and so m + p = n + p.

By induction assumption, we have m = n.

(⇐) Prove by mathematical induction on p.

When p = 0, if m = n, then m + p = m + 0 = m = n = n + 0 = n + p.

Assume that if m,n, p ∈ N such that m = n, then we have m + p = n + p.

Then, we also have (m + p)+ = (n + p)+ and so m + p+ = n + p+.

(Remark: recall the fact that for any x, y ∈ N, x = y if and only if x+ = y+.)

5. Show that for all p, q ∈ N, p ≤ q if and only if there exists r ∈ N such that q = p + r.

Ans:

(⇒) Prove by mathematical induction on p.

When p = 0, suppose that 0 = p ≤ q, then q = 0 + q = p + q (i.e. take r = q). Assume the p ∈ N
and if q ∈ N with p ≤ q, then we have q = p + r for some r ∈ N.

Now, if p+ ≤ q, we have p < q and hence p ≤ q.

By the induction assumption, q = p + t for some natural number t.

However, t cannot be 0. Otherwise, we have q = p which is a contradiction.

Then t is a nonzero natural number, it means that t = r+ for some natural number r.

Therefore, q = p + r+ = (p + r)+ = (r + p)+ = r + p+ = p+ + r.

(⇐) It is sufficient for us to show that for all p, r ∈ N, we have p ≤ p + r.

We prove it by induction on r.

When r = 0, it is trivial. Assume that p, r ∈ N such that p ≤ p + r.

Then p + r ≤ (p + r)+ = p + r+ and so p ≤ p + r+.

(Remark: By the result of question 1, if p ≤ q, then there exists unique r such that q = p + r.)
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6. (Archimedean Property) Prove that for all m,n ∈ N with n 6= 0, there exists q such that m < qn.

Ans:

Prove by mathematical induction on m.

When m = 0, since n 6= 0, we have m = 0 < n = 1 · n.

Assume that m ∈ N and there exists q such that m < qn.

Then we have m+ = m + 1 < qn + 1 ≤ qn + n = (q + 1)n.

Well Ordering Property states that every non-empty subset M of N contains a least element, i.e.

there exists m ∈M such that m ≤ n for all n ∈M .

Furthermore, the least element m must be unique. Note that if m and m′ are both least elements of M ,

then we have m ≤ m′ (m is a least element) and m′ ≤ m (m′ is a lease element) and so m = m′.

7. (Division Algorithm) If m and n are natural numbers and n 6= 0, prove that there exists unique

natural numbers q and r such that m = qn + r and 0 ≤ r < n.

Ans:

By Archimedean property, S = {a ∈ N : m < an} is a non-empty subset of N.

By well ordering property, there exists an unique least element t of S.

Furthermore, t cannot be 0 (otherwise, we have m < 0 · n = 0 which is a contradiction), so t = q+

for a unique q ∈ N.

Note that q must not be an element of S, so we have m ≥ qn.

There exists unique r ∈ N such that m = qn + r. (See question 2)

Note that r ∈ N, so 0 ≤ r.

We then claim that r < n. Suppose not and n ≥ r implies that r = n + r′ for some r′ ∈ N.

Then m = qn+ r = qn+ (n+ r′) = (qn+n) + r′ = q+n+ r′, that means m ≥ q+ which contradicts

to the fact that q+ ∈ S. Therefore, 0 ≤ r < n.

8. Prove that every natural number n > 1 is divisible by a prime number.

Ans:

Let S be the set of all natural numbers n > 1 which is not divisible by any prime number.

Suppose the above statement is false, then S is a non-empty set.

By the well ordering property, there exists a least natural number N > 1 that is not divisible by

any prime number.

Then N cannot be a prime, otherwise, N is divisible by itself which means it is divisible by a prime.

Therefore, N is a composite number, i.e. N = ab for some natural numbers a and b with 1 < a < N

and 1 < b < N .

Since 1 < a < N , a is divisible by a prime number p which implies N is also divisible by p

(Contradiction).

3


